A hybrid modeling approach to resolve pollutant concentrations in an urban area

 

Ariel F. Stein, Vlad Isakov, James Godowitch, Roland R. Draxler

 

Atmospheric Environment, 2007, Volume 41, pages 9410-9426.

 

Abstract - A modeling tool that can resolve contributions from individual sources to the urban environment is critical for air-toxics exposure assessments. Air toxics are often chemically reactive and may have background concentrations originated from distant sources. Grid models are the best-suited tools to handle the regional features of these chemicals. However, these models are not designed to resolve pollutant concentrations on local scales. Moreover, for many species of interest, having reaction time scales that are longer than the travel time across an urban area, chemical reactions can be ignored in describing local dispersion from strong individual sources making Lagrangian and plume- dispersion models practical. In this study, we test the feasibility of developing an urban hybrid simulation system. In this combination, the Community Multi-scale Air Quality model (CMAQ) provides the regional background concentrations and urban-scale photochemistry, and local models such as Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) and AMS/EPA Regulatory Model (AERMOD) provide the more spatially resolved concentrations due to local emission sources. In the initial application, the HYSPLIT, AERMOD, and CMAQ models are used in combination to calculate high- resolution benzene concentrations in the Houston area. The study period is from 18 August to 4 September of 2000. The Mesoscale Model 5 (MM5) is used to create meteorological fields with a horizontal resolution of 11km2. In another variation to this approach, multiple HYSPLIT simulations are used to create a concentration ensemble to estimate the contribution to the concentration variability from point sources. HYSPLIT simulations are used to model two sources of concentration variability; one due to variability created by different particle trajectory pathways in the turbulent atmosphere and the other due to different flow regimes that might be introduced when using gridded data to represent meteorological data fields. The ensemble mean concentrations determined by HYSPLIT plus the concentrations estimated by AERMOD are added to the CMAQ calculated background to estimate the total mean benzene concentration. These estimated hourly mean concentrations are also compared with available field measurements.

 

 

Email me the full report